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Abstract

Recognition in open-world scenarios is an important
and challenging field, where Vision-Language Pre-training
paradigms have greatly impacted the 2D domain. This in-
spires a growing interest in introducing 2D pre-trained mod-
els, such as CLIP, into the 3D domain to enhance the ability
of point cloud understanding. Considering the difference be-
tween discrete 3D point clouds and real-world 2D images, re-
ducing the domain gap is crucial. Some recent works project
point clouds onto a 2D plane to enable 3D zero-shot capa-
bilities without training. However, this simplistic approach
leads to an unclear or even distorted geometric structure, lim-
iting the potential of 2D pre-trained models in 3D. To ad-
dress the domain gap, we propose Point2Real, a training-free
framework based on the realistic rendering technique to au-
tomate the transformation of the 3D point cloud domain into
the Vision-Language domain. Specifically, Point2Real lever-
ages a shape recovery module that devises an iterative ball-
pivoting algorithm to convert point clouds into meshes, nar-
rowing the gap in shape at first. To simulate photo-realistic
images, a set of refined textures as candidates is applied
for rendering, where the CLIP confidence is utilized to se-
lect the suitable one. Moreover, to tackle the viewpoint chal-
lenge, a heuristic multi-view adapter is implemented for fea-
ture aggregation, which exploits the depth surface as an ef-
fective indicator of view-specific discriminability for recogni-
tion. We conduct experiments on ModelNet10, ModelNet40,
and ScanObjectNN datasets, and the results demonstrate that
Point2Real outperforms other approaches in zero-shot and
few-shot tasks by a large margin.

1 Introduction
In the field of 3D point cloud understanding, the open-world
setting has been receiving increasing attention(Ha and Song
2023; Zhang, Dong, and Ma 2023). Open-world scenar-
ios are filled with categories unseen in the datasets, which
poses huge challenges for the traditional method trained
on close-set. Similar open-world problems also exist in the
2D domain, and these problems have been significantly
mitigated with the development of Vision-Language Pre-
training. Methods like CLIP (Radford et al. 2021) align vi-
sual and textual modalities to equip the model with strong
zero-shot transfer capabilities, which sparks the motivation
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Figure 1: The Effect of Point2Real in Reducing Domain Gap.
Assuming different types of visual data, such as the 3D
Point Cloud domain and the 2D Vision-Language domain,
as points in a domain manifold, the distance of the short-
est geodesic path connecting them represents the domain
gap. Converting point clouds into realistic rendering images,
Point2Real can reduce this gap to GAPP2R, which is better
than projection.

to transfer similar paradigms to 3D. However, compared
to the billions of data used to train 2D Vision-Language
models, 3D annotated data is extremely scarce currently.
Hence, to realize open-world 3D recognition, introducing
pre-trained 2D models into the 3D domain is more practi-
cal than training a 3D large-scale model from scratch.

Point cloud data is unordered, sparse, and discrete, which
is different from the grid-based natural images used in 2D
pre-training. There is a huge domain gap between the point
cloud domain and the 2D Vision-Language domain, which
hinders the direct transfer from 2D pre-trained models to the
3D domain. Some efforts have been made to reduce the do-
main gap through the depth maps of point clouds. Pioneer
work (Zhang et al. 2022) projects point clouds into depth
maps to obtain CLIP-recognizable images. Calculating the
similarity with depth maps and CLIP-encoded 3D category
texts, this framework can achieve zero-shot transfer capa-
bility without training on 3D datasets. The following works
(Zhu et al. 2023; Huang et al. 2023) aim to refine the gen-
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Figure 2: Three Steps of Point2Real. Point2Real consists of
three modules, which progressively transform point clouds
into realistically rendered images from the aspects of shape,
texture, and viewpoint.

erator and encoder of the depth map to address the domain
gap between depth maps and 2D images. However, differ-
ent from natural images, the depth maps are characterized
by blurry edges and contain only single-channel color in-
formation, limiting the performance of CLIP-based recogni-
tion. As shown in Figure 1, different from prior works fo-
cusing merely on the processing of depth maps, our work
aims to more explicitly tackle the domain gap between point
clouds and natural images, and explore another new direc-
tion to map point clouds to photo-realistic images, unleash-
ing CLIP’s full potential in the 3D domain.

We observe that the domain gap between point clouds and
natural images primarily exists in three aspects: 1) Shape.
Point cloud data is discrete, vastly different from the con-
tinuous and smooth geometric structures commonly found
in photo-realistic images. 2) Texture. As the 2D pre-train
model is highly sensitive to texture information, merely re-
covering shape without texture is insufficient. Basic point
cloud data only contains spatial coordinates, lacking the cru-
cial texture information. 3) View. 3D point cloud has an
additional dimension compared to 2D images, requiring the
identification of suitable and discriminative view angles for
generating images. With such observations in mind, we in-
troduce Point2Real, an automatic framework for selecting
suitable viewpoints to render point clouds with clear geo-
metric structures and realistic textures.

As shown in Figure 2, Point2Real consists of three steps.
First, to refine the shape of the point cloud, we propose
Shape Recovery Module to automatically transform dis-
crete point clouds into meshes, which approximate the real
world. To ensure the framework’s zero-shot capability and
avoid overfitting to training data, we employ a graphics-
based framework that includes iterative ball pivoting re-
construction, holes repairing, and surface smoothing. This
method strengthens the geometric information of the point
cloud, endowing it with smooth surfaces and distinct edges.

Second, as the reconstructed meshes still lack texture in-
formation, Point2real includes Texture Rendering Module,
which can add texture information to meshes and perform
ray tracing-based rendering, thereby obtaining rendered im-
ages of the object from various viewpoints. Considering that
different categories may require various textures, we set a
texture candidate list. For each object, we use all the can-
didate textures for rendering and the classification logits for
texture selection.

Finally, among the multi-view rendered images, to se-
lect more discriminative viewpoints for recognition, we pro-

pose Multi-view Adapter. Intuitively, viewpoints that ex-
pose more geometric features will be recognized more eas-
ily. Building on this insight, we utilize the depth surface as
an indicator to represent the exposed geometry from a given
viewpoint and design a heuristic algorithm based on the sur-
face area to select viewpoints that sufficiently expose geo-
metric features automatically.

To quantitatively validate the zero-shot and few-shot ca-
pabilities of Point2Real, we conduct experiments on the
ModelNet10 (Wu et al. 2015), ModelNet40 (Wu et al. 2015),
and ScanObjectNN (Uy et al. 2019) datasets, commonly
used for object classification tasks. Point2Real is shown to
significantly outperform other approaches, achieving state-
of-the-art results in both zero-shot and few-shot settings.

2 Related Work
2.1 Zero-shot Learning in 3D
The demand for recognizing unknown classes naturally ex-
ists in the 3D domain. Cheraghian, Rahman, and Petersson
first extended zero-shot framework to 3D. Follow-up works
(Cheraghian et al. 2019, 2022, 2020) make efforts to alle-
viate the Hubness problem (Radovanović, Nanopoulos, and
Ivanović 2010) and extend the framework to more zero-shot
settings. Recently, with the impressive zero-shot capabili-
ties demonstrated by Visual-Language Models in the 2D
domain, some efforts have been made to introduce CLIP
into 3D for open-world recognition. Some works (Xue et al.
2023; Qi et al. 2023; Huang et al. 2023) aim to obtain a
CLIP-aligned encoder by training on 3D datasets. In con-
trast, PointCLIP (Zhang et al. 2022), which is among the
earliest works to bring CLIP into 3D, achieves zero-shot ca-
pability without training. PointCLIP achieves this by pro-
jecting 3D point clouds into 2D depth maps to obtain CLIP-
recognizable images. Furthermore, PointCLIP V2 (Zhu et al.
2023) proposes an LLM-based Prompting structure to re-
place the simple prompt and a Realistic Shape Projection
to replace the Sparse Visual Projection. Similar to these
methods, Point2Real also introduces CLIP to obtain open-
world recognition capability. Furthermore, for an input point
cloud, Point2Real can output rendered images with texture
information and smooth geometry. This endows Point2Real
with enhanced zero-shot capability.

2.2 Transfer 3D Point Cloud to 2D Image
Compared to the 3D domain, the 2D domain provides much
more abundant neural networks and a larger amount of data.
Hence, in contrast to point-based models (Ma et al. 2022;
Qi et al. 2017a,b; Wang et al. 2019; Wu, Qi, and Fuxin
2019). some works (Roveri et al. 2018; Ahmed, Liang, and
Chew 2019; Feng et al. 2018; Guo et al. 2016) transform
3D point clouds into 2D images for shape classification.
Therein, PointCLIP (Zhang et al. 2022) and SimpleView
(Goyal et al. 2021) conduct projection using a viewpoint
transformation. PointCLIP V2 (Zhu et al. 2023) applies a
four-step procedure including voxelize, density, smooth, and
squeeze to realize a denser distribution of points on the 2D
plane. Most of the aforementioned approaches are based on
projection techniques and attempt to improve the quality of
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Figure 3: The pipeline of Point2Real. For visual encoding, we apply Shape Recovery Module, Texture Rendering Module, and
Multi-view Adapter to generate realistic images of point clouds. For textural encoding, we use LLM-assisted prompting to
generate class-specific prompts. Point2Real can also be used in few-shot tasks with a dual-path network introduced in Sec.3.3.

depth maps. However, the results still differ a lot from photo-
realistic images. Motivated by this, we take a novel approach
by directly converting discrete point clouds into meshes with
clear geometry and further enhancing their realism in terms
of texture and viewpoint.

2.3 Mesh Reconstruction from Point Cloud
Extracting meshes from point clouds is a fundamental task.
As a classic and effective method, the Ball-Pivoting algo-
rithm (Bernardini et al. 1999) iteratively rotates a sphere
with a fixed radius on the point cloud and connects neigh-
boring points to construct triangle patches. Another clas-
sical method is the Poisson Surface Reconstruction(PSR)
algorithm (Kazhdan, Bolitho, and Hoppe 2006; Kazhdan
and Hoppe 2013), which utilizes the principles of PSR and
performs volume-based surface reconstruction based on the
signed distance function of the input point cloud. There
are also some later methods (Peng et al. 2021; Sellán and
Jacobson 2022) improved based on PSR. Apart from the
above graphics-based methods, numerous data-driven meth-
ods (Yu et al. 2018b,a; Groueix et al. 2018; Guerrero et al.
2018; Williams et al. 2019; Vakalopoulou et al. 2018) have
emerged in recent years. these methods would employ neu-
ral networks to learn prior from 3D datasets. In the open-
world scenario, there is a need for generalization beyond
the training set. Therefore, we opt for graphics-based meth-
ods to avoid overfitting. Specifically, in this work, due to the
high reliance of PSR-type methods on point cloud density,
which is challenging to guarantee in various applications,
our Shape Recovery Module is based on the Ball-Pivoting
algorithm.

3 Methodology
In this section, we will introduce how Point2Real con-
verts point clouds into realistic rendered images and how
we select the better viewpoints. In the end, we will show
how Point2Real works in 3D open-world tasks. The whole
pipeline of Point2Real is illustrated in Figure 3.

3.1 Convert Point Cloud into Realistic Image
A two-step procedure is adopted to convert point clouds
into realistic rendered images. First, Shape Recovery Mod-
ule will transfer point clouds into meshes. Second, Texture
Rendering Module can select a suitable texture to render im-
ages from several viewpoints.

Shape Recovery Module Point clouds are discrete, result-
ing in a scattered plot when projected onto a 2D plane. This
representation suffers a substantial domain gap with realistic
images that possess continuous and smooth geometric struc-
tures. This severely limits the recognition potential of CLIP
in 3D. To improve the recognizability of geometric struc-
tures in point cloud data, we opt for the reconstruction of the
input point cloud into a mesh structure. Compared to other
3D representations such as voxels, meshes can more flexibly
and efficiently represent the appearance of objects, allowing
for rendering results that closely approximate reality.

Numerous techniques are available for mesh reconstruc-
tion. To avoid the risk of overfitting the training data and en-
sure the framework’s capability for zero-shot scenarios, the
Ball-Pivoting algorithm (Bernardini et al. 1999) is employed
for mesh reconstruction. Building upon the traditional Ball-
Pivoting algorithm, we introduce an iterative variant to en-
hance the reconstruction quality. The whole process involves
normal estimation, iterative reconstruction, holes filling, and
smoothing, ultimately resulting in the conversion of the in-
put point cloud into a mesh.

Specifically, for the point cloud denoted as P = {pi}Ni=1,
we can estimate the normal as N = {ni}Ni=1 with PCA
method, where ni represents the smallest eigenvalue of the
covariance matrix Ci computed from the local neighbor-
hood Vi of point pi:

Ci =
1

k

∑
pj∈Vi

(pj − p̄i)(pj − p̄i)
T . (1)

The Ball-Pivoting algorithm, denoted as fBPA(·), iteratively
pivots balls over the point cloud surface, connecting adjacent
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Figure 4: The Pipeline of Shape Reconstruction. Applying
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quality of the mesh improves as the number of iterations in-
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points to form triangles set

F = fBPA(P,N , ρ), (2)

and the meshes can be obtained by

M = (P,F), (3)

where ρ represents a specified radius of the ball. Consider-
ing point clouds are sparse in many scenarios, the traditional
Ball-Pivoting algorithm may leave many holes on the sur-
face. By applying the Ball-Pivoting algorithm with different
ρ, we can obtain a triangle set F ′ with a different grain level
and generate a better 3D surface

M′ = (P,F ∪ F ′). (4)

With multiple iterations of reconstruction, point clouds can
be converted into meshes with smooth surfaces and clear ge-
ometric structures, as depicted in Figure 4.

Texture Rendering Module The Texture Rendering
Module employs a ray tracing-based rendering approach to
achieve the generation of photo-realistic images from the
reconstructed meshes. The meshes are placed at the center
of the scene, illuminated by suitable environmental lighting.
Following UV mapping and material shading, each mesh M
is rendered from M different viewpoints.

Considering different categories may have varying tex-
ture requirements, the Texture Rendering Module maintains
a texture candidates list {ti}Ti=1, encompassing textures such
as brown, metallic green, and leather red. For each object,
we utilize all textures to render from M viewpoints, result-
ing in the image set {Iij}(M,T )

i=1,j=1. Through the computation
of classification logits introduced in Section 3.3, we obtain
the most suitable texture used to classify each object.

3.2 Aggregate Features with Multi-view Adapter
As some works (Zhang et al. 2022; Zhu et al. 2023) noticed,
aggregating features from multiple viewpoints can provide

a more comprehensive understanding of 3D point clouds.
However, not all viewpoints are suitable for classification.
Some viewpoints can be challenging for recognition even
for humans. For instance, the rear views of furniture may fre-
quently appear as indistinguishable rectangles. When testing
on the dataset, some approaches may pre-assign weights for
viewpoints. However, this is unfeasible in practical applica-
tions.

To address this challenge, we propose the Multi-view
Adapter, which can evaluate the recognizability of a group
of viewpoints and generate weights for each view. The in-
sight of this module is that with a uniform texture, view-
points that emphasize more geometric features will lead to
easier recognition. As shown in Figure 5, we design a heuris-
tic algorithm based on the depth surface to automatically se-
lect viewpoints that sufficiently reveal geometric features.
The depth surface represents the surface formed by the depth
map in three-dimensional space, where the convex and con-
cave regions correspond to areas closer to and farther from
the camera, respectively. Intuitively, if the area of the depth
surface is larger, indicating greater undulations, it implies
the presence of numerous depth discontinuities in that view-
point, signifying the complexity of the geometric features.

Specifically, for an object’s depth map Di in set {Di}Mi=1,
its depth surface can be represented as:

Si := {z−Di(x, y) = 0}, (5)

where z(x, y) is a function of the image coordinates x and
y, denoting the grey value of Di at coordinates (x, y). Fur-
thermore, the area of the depth surface Si can be represented
as follows:

Ai =

∫∫
Si

dSi =

∫∫
Di

∥∥∥∥∂z∂x × ∂z

∂y

∥∥∥∥ dx dy (6)

=

∫∫
Di

√(
−∂z

∂x

)2

+

(
−∂z

∂y

)2

+ 1 dx dy,

where Ai is the area of the depth surface for the i-th view-
point, ∂z

∂x and ∂z
∂y are the partial derivatives of z with respect

to x and y, respectively. They represent how the depth value
changes along the x and y directions, indicating the steep-
ness of the depth surface. In the actual algorithm implemen-
tation, we approximate the partial derivatives as:

∂z

∂x
≈ z(x+∆x, y)− z(x, y)

∆x
, (7)

∂z

∂y
≈ z(x, y +∆y)− z(x, y)

∆y
, (8)

where ∆x and ∆y are the pixel sizes in the x and y direc-
tions, respectively.

By calculating the integral for every depth map in
{Di}Mi=1, the areas of depth surfaces for M viewpoints can
be denoted as {Ai}Mi=1. With normalization, centralization,
and activation, the final weight can be obtained as follows:

ωi = σ(
Ai − Ā

Â
), (9)
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Figure 5: Depth Surface. Compared to View A, View B ex-
hibits a clearer geometric structure. As a result, the depth
surface of View B will appear significantly larger than that
in View A. By calculating the area of the depth surface, View
B will be assigned a higher weight.

where σ denotes the sigmoid function, Ā and Â denotes the
mean function and the standard deviation function. The re-
sulting weights set {ωi}Mi=1 represents the relative impor-
tance or recognizability of each viewpoint. Aggregating fea-
tures from M viewpoints based on {ωi}Mi=1 will contribute
to zero-shot recognition in Point2Real framework under di-
verse real-world scenarios.

3.3 Point Cloud Understanding by Point2Real

Zero-shot classification Point2Real does not rely on 3D
data and can be directly tested on existing datasets without
any training. For the input point cloud P = {pi}Ni=1, to ob-
tain a realistic shape with a smooth and flat surface, Shape
Recovery Module converts P into meshes M = (P,F),
where F denotes the set of faces. To introduce appropri-
ate texture information to the blank mesh M, Texture Ren-
dering Module renders images from M different viewpoints
and T texture candidates {ti}Ti=1, resulting in the rendered
image set {Iij}(M,T )

i=1,j=1. The rendered multi-view images
are individually fed into the frozen CLIP visual encoder to
obtain multi-view features denoted as {fij}(M,T )

i=1,j=1. Mean-
while, Multi-view Adapter calculates view weights {ωi}Mi=1
based on the depth surfaces of M viewpoints, which re-
flect their distinctiveness. For the textual branch, we employ
LLM-assisted Prompting, which is proposed by PointCLIP
V2 (Zhu et al. 2023), to generate class-specific prompts.
With the CLIP textural encoder, the prompts of K classes
can be encoded into C dimensions as a zero-shot classifier
Wtext ∈ RK×C . For each texture tj , the corresponding clas-
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Figure 6: Dual-path Network. This architecture extends
Point2Real to few-shot tasks. The upper branch of the net-
work extracts features from rendered images, while the
lower branch extracts features from depth maps. By fusing
these two sets of features, the model gains enhanced learn-
ing capabilities.

sification logitsj is computed individually:

logitsj =

M∑
i=1

ωifijW
T
text, for j = 1, . . . , T, (10)

the most suitable texture tτ can be obtained by:
τ = argmax

j=1...,T
max(logitsj), (11)

and the classification logits of P can be obtained by:
logitsP = logitsτ . (12)

The classification results can be derived from logitsP .

Few-shot classification To further enhance the practical
applicability of our framework, we expand Point2Real to the
few-shot scenario, enabling the model to finetune the frame-
work using a limited amount of 3D data. We adopt a dual-
path network to simultaneously leverage shape and depth
information. The dual-path network extracts features from
both rendered images and depth maps, aggregating them to
attain a holistic comprehension of point clouds. Consider-
ing the potential risk of overfitting in the presence of limited
data, we opt for relatively simple network structures to im-
plement the aforementioned modules like PointCLIP (Zhang
et al. 2022).

Specifically, for the multi-view rendered images {Ii} and
their corresponding depth maps {Di}, we utilize the CLIP
visual encoder to separately extract object features {f I

i } and
depth features {fD

i }. Both sets of features are then com-
bined using a dual-path three-layer Multi-layer Perceptron
(MLP) with a residual connection, as shown in Figure 6. The
classification results can be obtained by calculating the simi-
larity between the fused features and textual features, similar
to the zero-shot task.

4 Experiments
In this section, we will first present the implementation de-
tails of Point2Real. Subsequently, we will separately show
the performance of our method under zero-shot and few-shot
settings.



Method 3D Training-free MN10 MN40 S-OBJ ONLY S-OBJ BG S-PB T50 RS

PointCLIP (Zhang et al. 2022) ✓ 30.2 23.8 21.3 19.3 15.4
Cheraghian (Cheraghian et al. 2022) - 68.5 N/A N/A N/A N/A

CLIP2Point (Huang et al. 2023) - 66.6 49.4 35.5 30.5 23.3
ReCon (Qi et al. 2023) - 75.6 61.7 43.7 40.4 30.5
ULIP (Xue et al. 2023) - N/A 60.4 N/A N/A 49.9

PointCLIP V2 (Zhu et al. 2023) ✓ 73.1 64.2 50.1 41.2 35.4

Point2Real (ours) ✓ 79.5 65.8 57.7 53.0 38.1

Table 1: Zero-shot 3D Classification (%) on ModelNet10, ModelNet40 and ScanObjectNN. We report the zeeo-shot performance
of Point2Real. “3D Training-free” refers to not requiring training on 3D datasets.

Shape Texture View MN10 MN40

- - - 73.1 64.2
✓ - - 75.9 60.3
✓ ✓ - 78.4 65.3
✓ ✓ ✓ 79.5 65.8

Table 2: Ablation Study of Point2Real on ModelNet10 and
ModelNet40 zero-shot classification (%). We conduct the
ablation study in three dimensions. For shape, texture, and
view dimension, ✓ respectively represents Mesh Recon-
struction, Realistic Rendering, and Multi-view Adapter. −
indicates the above operations will be replaced with Depth
Projection, Coloration with white, and Mean Function.

4.1 Implementation Details
The entire framework can work end-to-end. For mesh re-
construction, we apply 5 iterations of the ball-pivoting algo-
rithm with ρ = 5, 4, 3, 2, 1 for each iteration. The render-
ing procedure is implemented based on Blender Python API
with Cycles engine (Blender Online Community 2023), and
10 viewpoints uniformly distributed around the object are
selected for rendering. For rendering, the texture candidate
list includes beige, metallic green, leather red, pink, brown,
and dark grey, and the output image format is 224∗224. The
kernel size of the Gaussian filter in the Multi-view Adapter
is (7, 7, 5). Following PointCLIP V2’s setup, we use 1024
points as input, and choose ViT-B/16 as our visual encoder.
More details are listed in the supplementary material. The
supplementary material and code are publicly available.1

4.2 Zero-shot Classification
Settings To evaluate the recognition capability of
Point2Real for unknown categories, we conduct zero-shot
classification experiments on three commonly used 3D
datasets: ModelNet10, ModelNet40, and ScanObjectNN.
ModelNet10 and ModelNet40 contain 10 and 40 classes
of common synthetic objects, respectively, while ScanOb-
jectNN includes 15 classes of real-world objects. We
make use of three splits of the ScanObjectNN dataset:
OBJ ONLY, OBJ BG, and PB T50 RS. Under a more
challenging setting, similar to PointCLIP and PointCLIP

1https://github.com/HanXuan-Li/Point2Real

Reconstruction Iteration Zero-shot

Ball-Pivoting 1 78.6
Poisson 1 56.3

Iterative Ball Pivoting 5 79.5

Table 3: Ablation Study of Shape Recovery Module on Mod-
elNet40 zero-shot classification (%). We convert the abla-
tion study by replacing Shape Recovery Module with one-
iteration Ball-Pivoting and Poisson Reconstruction.

V2, Point2Real can directly test its performance on the
entire dataset without training. Following PointCLIP V2’s
settings, we use the test sets from all the aforementioned
datasets for evaluation and adopt LLM-assisted Prompting
without View Weighing. We compare our method with
existing related works under their respective best settings.
Specifically, for CLIP2Point and PointCLIP V2, we use ViT-
B/16 as the backbone. For PointCLIP, we use ResNet101,
ResNet-50×4, and ViT-B/16, corresponding to ModelNet10,
ModelNet40, and ScanObjectNN, respectively, to achieve
its best performance.

Performance As shown in Table 1, we compare our
method with existing approaches that demonstrate zero-shot
results. Some of these rely on training on 3D datasets. Cher-
aghian divides the ModelNet10 dataset into seen and un-
seen parts and conducts training on the seen classes before
testing on the unseen classes. CLIP2Point and ULIP focus
on using 3D data to train a point cloud encoder aligned
with the CLIP. In contrast, PointCLIP, PointCLIP V2, and
our method can directly test on 3D datasets without train-
ing in 3D, which would bring more challenges. Among all
mentioned datasets, we achieve state-of-the-art results, com-
pared with all training-free methods and most training meth-
ods. On the ModelNet10 dataset, we achieve 79.4% accu-
racy, surpassing ReCon by +3.9% and PointCLIP V2 by
+6.4%. For the ModelNet40 dataset, which includes out-
door object categories, we outperform PointCLIP V2 by
+1.6%. Moreover, for the progressively challenging datasets
S OBJ ONLY, S OBJ BG, and S PB T50 RS, we exceed
PointCLIP V2 by +7.6%, +12.2%, and +2.7%, respectively.

Ablation Study As shown in Table 2, we conduct abla-
tion experiments on Point2Real, involving three dimensions



PointCLIP V2 CLIP2Point Point2Real

Time (s) 0.0097 0.0175 2.9360† / 0.0397‡

Acc. (%) 73.1 66.6 79.5† / 78.1‡

Table 4: Computational Cost. All tests are conducted on
a single NVIDIA GeForce RTX 4090 GPU. † denotes
Point2Real implemented based on Blender, ‡ denotes a
faster version based on PyTorch3D.

for rendering point clouds realistically: shape, texture, and
view. If we simply use a white color mesh reconstructed
by the Shape Recovery Module, the zero-shot accuracy is
75.9% in ModelNet10 and ModelNet40, reduced by -3.6%
and -5.5% respectively. When we use the texture candidate
list for rendering, the texture information can improve zero-
shot performance by +2.5% and +5.0%, respectively. With
the Multi-view Adapter added, the accuracy can return to
the highest value. Consistent with intuition, we observe that
texture dimensions can lead to a substantial improvement for
both datasets, which reflects that CLIP is indeed sensitive to
texture information. Due to the fact that more than half of
the viewpoints adopted in the datasets are easily distinguish-
able, the multi-views adapter seems to be less important in
the ablation experiment. However, in practical applications,
this module will provide greater assistance when we cannot
ensure the recognizability of the majority of viewpoints. In
Table 3, we conduct an ablation study on the Shape Recov-
ery Module. If we use the Ball-Pivoting algorithm only once
or use poison reconstruction, the performance will decrease
by -0.9% and -23.2%, respectively. Furthermore, as pre-
sented in Table 4, Blender-based Point2Real can complete a
full inference within 3 seconds, with the Texture Rendering
Module consuming the majority of the time consumption.
For real-time application scenarios, Blender can be substi-
tuted with a more efficient rendering framework, such as
PyTorch3D. A simplified version based on PyTorch3D can
achieve comparable efficiency to existing methods.

4.3 Few-shot Classification
Settings In order to test the performance of Point2Real
in few-shot scenarios. We conduct k-shot experiments on
ModelNet40 dataset, where k ∈ {1, 2, 4, 8, 16}. For k-
shot experiment, we randomly sample k objects of each
class from the training set for training. The brown texture is
used for rendering. During the training process, for the sake
of performance and efficiency, we keep the CLIP encoder
frozen and only train the dual-path network. We compare our
method with PointCLIP under its best settings. Consider-
ing there is no open-source implementation for the Few-shot
part of PointCLIP V2 currently, we use PointCLIP+RSP to
approximate its performance for comparison. We compose
PointCLIP+RSP from PointCLIP’s inter-view adapter and
PointCLIP V2’s Realistic Shape Projection (RSP). Specifi-
cally, for the visual backbone, we use RN101 for PointCLIP,
ViT-B/16 for PointCLIP+RSP and Point2Real, respectively.
For the textual input, we use the prompts “point cloud of a
big [CLASS].”, “An obscure grayscale depth map of an in-

Shots 1 2 4 8 16

PointCLIP 52.6 69.2 76.4 81.2 86.3
PointCLIP + RSP 62.3 70.7 74.2 81.5 85.2

Point2Real 67.5 71.9 77.6 82.1 86.3

Table 5: Few-shot classification Performances(%) on Mod-
elNet40. RSP denotes the Realistic Shape Projection module
of PointCLIP V2.

clined rough [CLASS] 3D model.”, and “This is a rendered
image of a [CLASS] synthetic 3D mesh model.” for Point-
CLIP, PointCLIP+RSP, and Point2Real, respectively.

Performance As shown in Table 5, Point2Real consis-
tently outperforms other methods across different shot set-
tings. In the one-shot setting, our method achieves 67.5%,
surpassing PointCLIP by +14.9%, and PointCLIP+RSP by
+5.2%. We observe that as the number of shots increases,
the improvement of Point2Real is gradually reducing. We
believe this may be attributed to the increasing training data,
which enables the model to learn how to classify based on
the variations in categories within the dataset. This implies
that Point2Real’s advantages can be more pronounced in a
data-limited environment.

Ablation Study PointCLIP+RSP employs depth maps as
input to train a single-path Adapter, whereas Point2Real
uses both depth maps and rendered images as input to train
a dual-path adapter. Therefore, PointCLIP+RSP can be re-
garded as an experiment where the rendering image input
component is ablated in our approach. As illustrated in Ta-
ble 5, we exhibit improvements across all different settings
compared to PointCLIP+RSP. This indicates that the real-
istic rendering image generated by Point2Real can enhance
the performance in few-shot scenarios, particularly when the
number of shots is low.

5 Conclusions
We propose Point2Real, a powerful framework designed
for transferring 2D Vision-Language Models into 3D. By
converting point clouds into realistic rendered images from
shape, texture, and viewpoint dimensions, Point2Real sig-
nificantly reduces the gap between the 3D point cloud do-
main and the 2D Vision-Language domain. Our work can
function as a zero-shot and training-free plugin, enabling the
application of Pre-trained Vision-Language Models to the
3D domain. Experimental results conclusively demonstrate
the strong zero-shot transfer ability of Point2Real, yield-
ing state-of-the-art performance across most of the datasets.
Furthermore, Point2Real can be flexibly adapted to few-
shot tasks, effectively enhancing performance. While our
work has limitations, notably increased time overhead at-
tributed to the Blender rendering method, this issue can
be significantly mitigated by adopting a more efficient ren-
dering framework like Pytorch3D. Future works will fo-
cus on leveraging limited 3D data to optimize the transfor-
mation from point clouds to realistic images and applying
Point2Real in more downstream tasks.
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